

Leveraging Data Al for Cyber Risk Management

How Data Science is Changing the Game

The Challenge

CISOs and CFOs lack insights to justify and make informed decisions about cybersecurity investments and cyber risk priorities

\$215 Billion

annually spent on Cybersecurity

\$20 Billion^[2]

annually spent on Cyber Insurance

With no financial analysis of cyber risk priorities or best approach Industrial environments (OT) have even less information

"You can't manage what you don't MEASURE."

Peter F. Drucker

Cyber Risk Management

Risk-based Cybersecurity & data-driven Risk Management based on business impact

Cyber Risk Data & Analytics required

Acceptance

Reserving

You know which risk and how much liability you carry on your balance sheet

Transfer

Cyber Insurance

You know what coverage and how much limit you need. And premium to pay

Controls to buy down risks

You can confidently prioritize risk mitigation controls & projects and justify your budget

Avoidance

Understanding drivers

You can identify where you could do things differently to avoid risk

Full-stack Cyber Risk Management for Industrial Enterprises & Physical Critical Infrastructures

5-D Rule for Cyber Risk Management

Dynamic

Distributed

Defensible

Data-driven

Decision-enabling

Cyber-Physical Systems & Industry Verticals

RENEWABLE ENERGY

MANUFACTURING

THERMAL ENERGY

DATA CENTERS

TRANSMISSION

TRANSPORTATION

DeNexus Confidential and Proprietary - @2025 by DeNexus, Inc. All rights reserved.

Information Security (Infosec) Fundamentals

IT Security

Protecting data & systems

- 1) Confidentiality
- 2) Integrity
- 3) Availability

ICS/OT Security: IT + PHYSICAL

Protecting digital systems that control physical assets

- 1) Safety
- 2) Observability (inputs: sensors)
- 3) Controllability (outputs: actuators)
- 4) Availability
- 5) Integrity
- 6) Confidentiality

Priorities are reversed

What is financial quantification of cyber risk?

Estimating financial loss of a cyber-attack affecting ICS/OT

What is Quantification of Cyber Risk?

"A method of expressing [cyber] risk exposure from interconnected digital environments to the organization in business terms [...] using a combination of

- Business logic
- Mathematical models
- Loss event history
- Current risk assessment

to produce defensible exposure value ranges of a chosen period"

Not Qualitative BUT Quantitative Analysis. It's Cyber Risk in \$\$\$ Values

It's Cyber Risk in

Values

Quantitative Approach to Cyber Risk

1st Generation

- Firmographics:Revenue, Industry
- Excel spreadsheets
- Qualitative

2nd Generation

- Integrate security data when/where available
- Opportunistic more than systematic
- Mostly IT, often static

3rd Generation

- Inside telemetry
- Dynamic
- Includes OT
- AI/ML-driven analysis
 - Big data
 - High-performance algorithms

HIGHER FIDELITY

Quantitative Approach to Cyber Risk

Cyber Loss (\$) from Operational Technology

Probability of Success is driven by how the OT is Network is Built and Protected

Leverage Data for cyber risk management

Inside-data Outside-data

Surface Web

Attractiveness

- Customer-verified external data
- IPs, Domains, Providers

Internet History

Malware

Supplier Breach

Surface Web

- Publicly accessible websites
- Search engines

Inside-data

- Confidential
- Customer-provided
- Telemetry: data-driven, continuous

Privileged Users

Logs & Events

Deep Web

- Not accessible by search engines
- Requires deeper research, curation, and preparation
- Privileged, classified, or paid information

OT-specific

OT Vendor

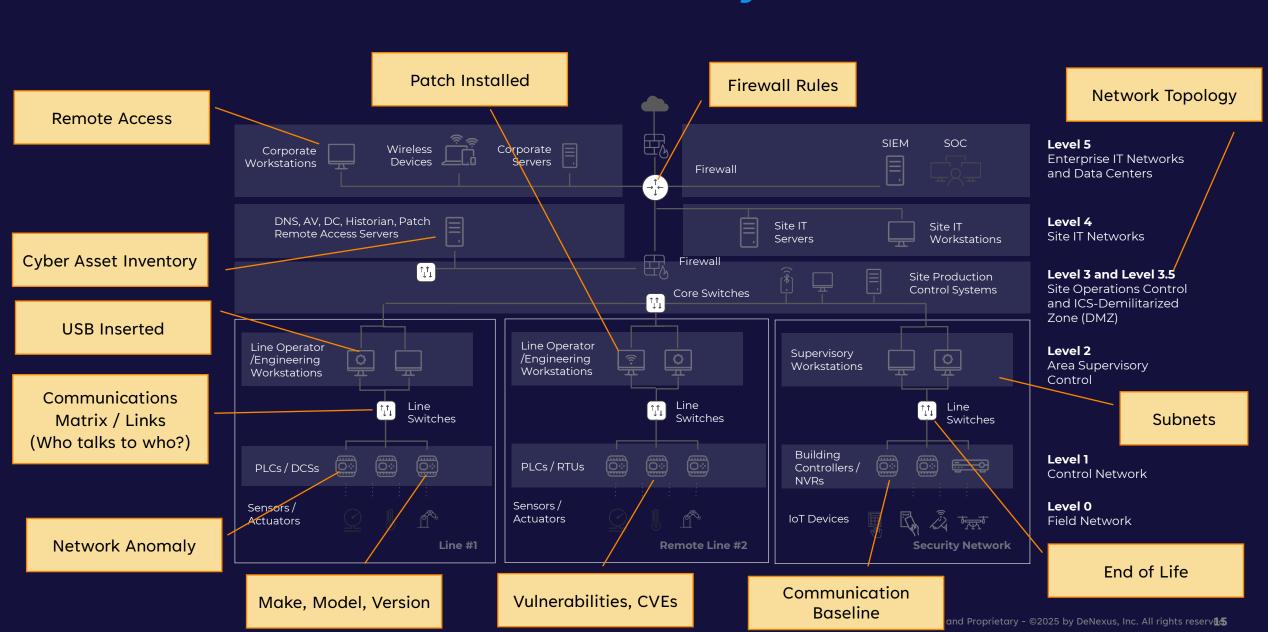
- Level of convergence and integration
- Vendors, service providers, and other thirdparties
- Cyber-physical impacts (disruption, damage, HS&E, ... Vulnerabilities

Name Matches

Stolen Credential

Dark Web

C&C Servers


Threat Intel

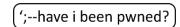
- Legitimate whistleblowers, WikiLeaks, suppressive political regime bypass
- Criminal activities
- May contain illegally obtained data
 - IP Theft, data breach, stolen credentials

DeNexus Confidential and Proprietary - ©2025 by DeNexus, Inc. All rights reserved.

Data from Internal OT Telemetry

DKC - Data Available

Outside-in Data


SHODAN

(m) censys

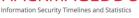
Inside-out Data

FIRSTupvoleg Security Together

CAPEC

CVVE

Firmographics and Financial Data



Cyber Incidents Data

European Repository of Cyber Incidents

Metadata

CISSM CYBER ATTACKS DATABASE

Modeling the OT Network and Attacks

Leverage Data for cyber risk management

Modeling the OT Network and Attacks

Real Environment

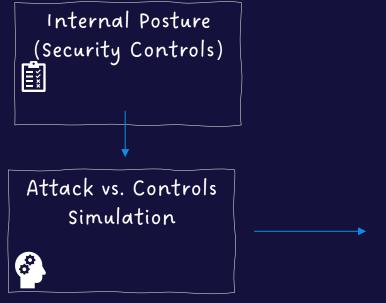
Cyber Threat Landscape

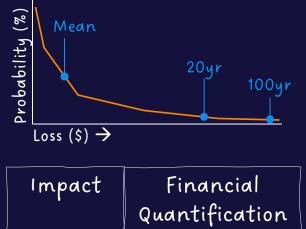


Vulnerabilities & Technical Debt

	Critical	High	Medium	Low	Exploitable
1999 - 2004	1	9	61	3	42
2005 - 2009	9	15	34	34	20
2010 - 2014	67	234	272	6	175
2015 - 2019	96	225	234	3	160

Network Architecture


Digital Twin - for Simulation



Simplified Model

Cyber Threat Intelligence

- Actors, Malware, TTPs, CVEs, EPSS, Skill
- Victimology
- Cyber Incident historyHow many attacks?

Attack Simulation

- Evaluate effectiveness of
 - cyber safeguards &vulnerabilities, versus
 - threat landscape

Can incident propagate to loss event?

Financial Quantification

- Transform incidents into financial losses
 - Probability & Impact
- Continuously assess risk

 What is the financial

 impact?

Cyber Risk Modeling

How many attacks?

Can incident propagate to loss event?

What is the financial impact?

Powered by Outside-in Data

Absorbing Markov Chain Models Branched Random walks

Powered by Inside-Out & Outside-In Data

Graph analytics
Stochastic optimization with simulated annealing

Powered by

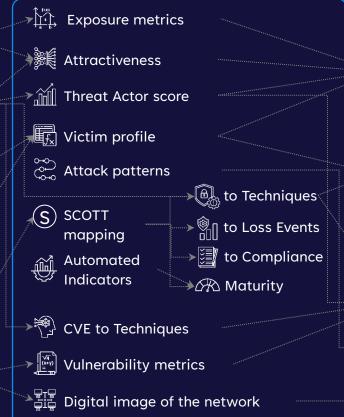
Business-Risk-Loss Data

Data Science Life Cycle

- . - ...

Measurements

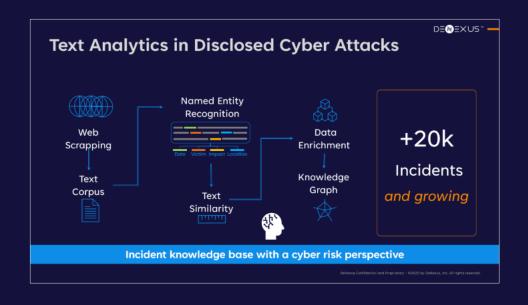
Modeling

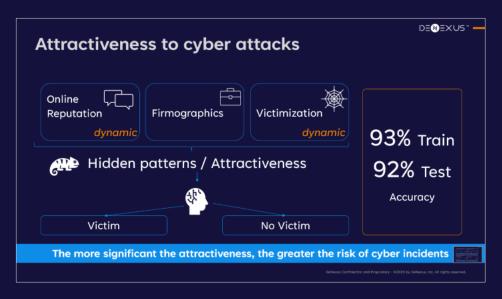

Reporting

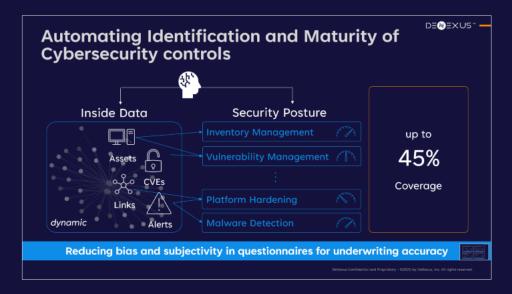
Security

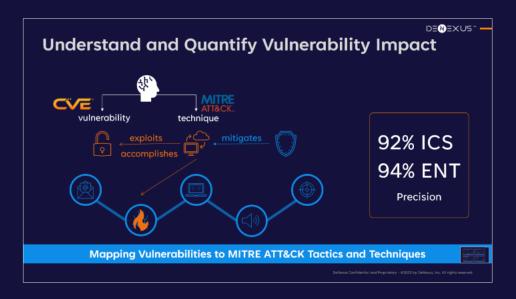
Controls

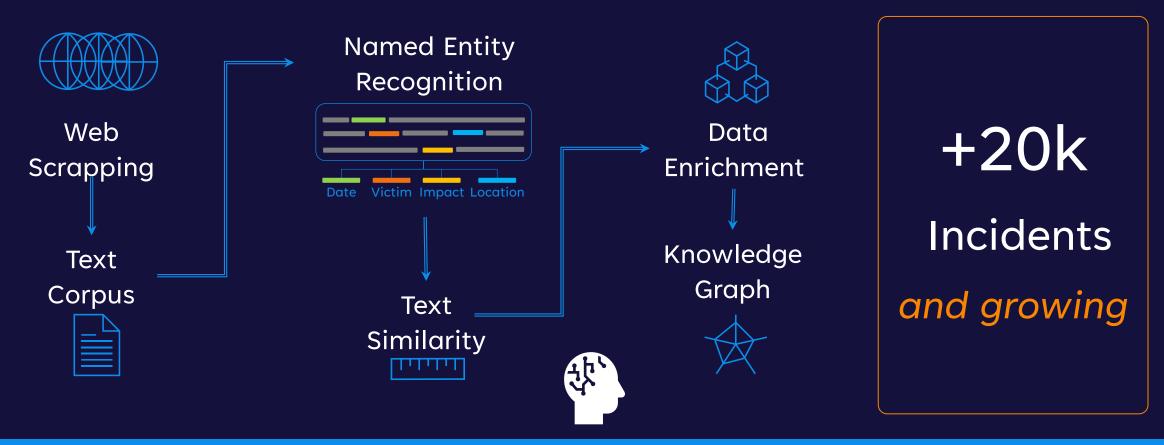
☐ Inside-Out

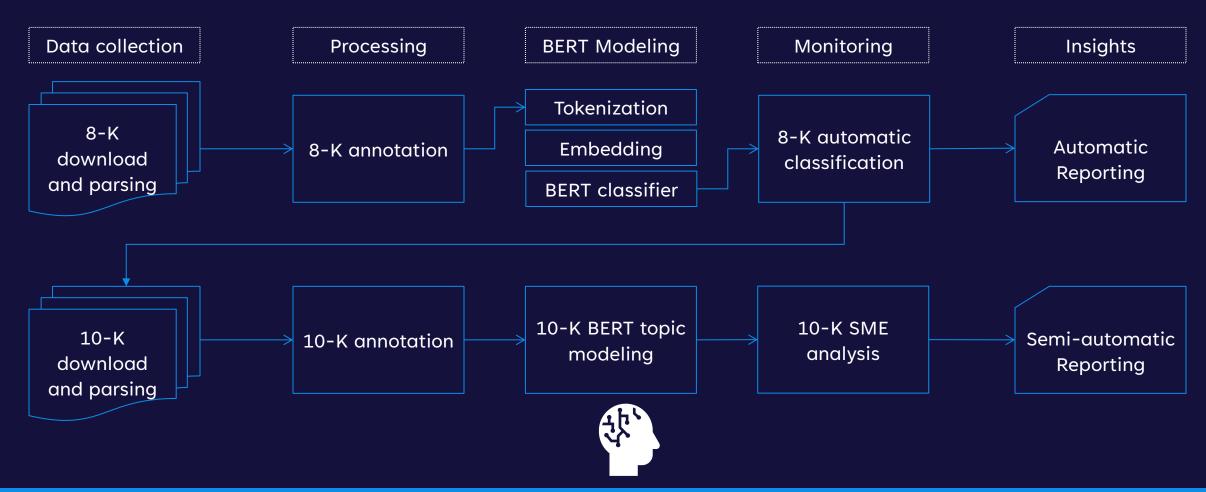




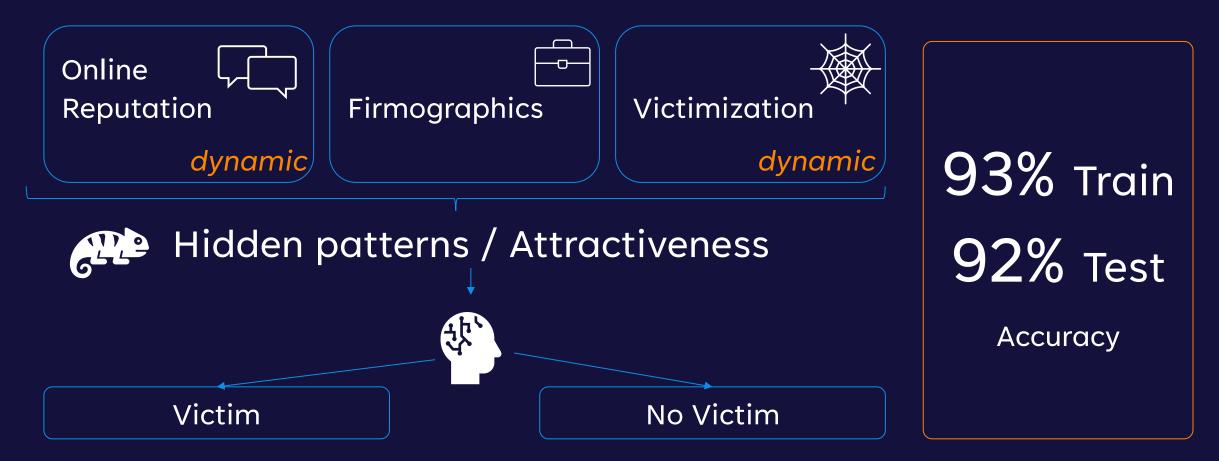

Leveraging data for 3rd Gen CRQM


Estimating financial loss of a cyber-attack affecting ICS/OT

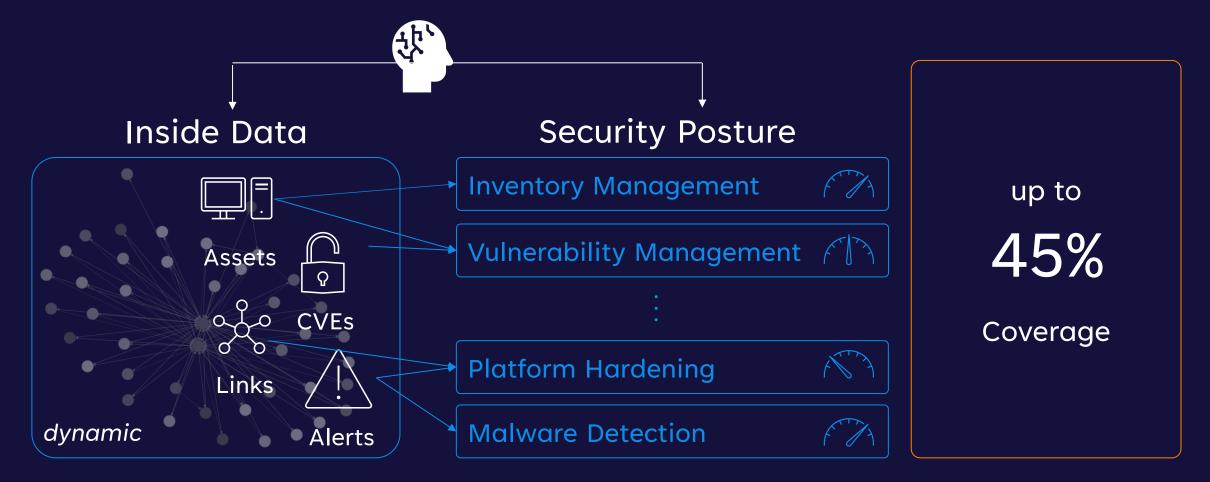



Text Analytics in Disclosed Cyber Attacks

Incident knowledge base with a cyber risk perspective

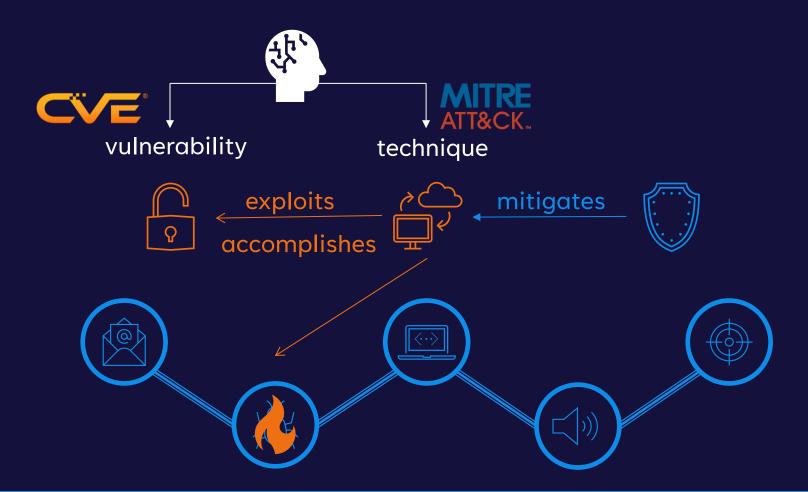

Intelligent Monitorization of SEC 8-K

Attractiveness to cyber attacks



The more significant the attractiveness, the greater the risk of cyber incidents

Automating Identification and Maturity of Cybersecurity controls



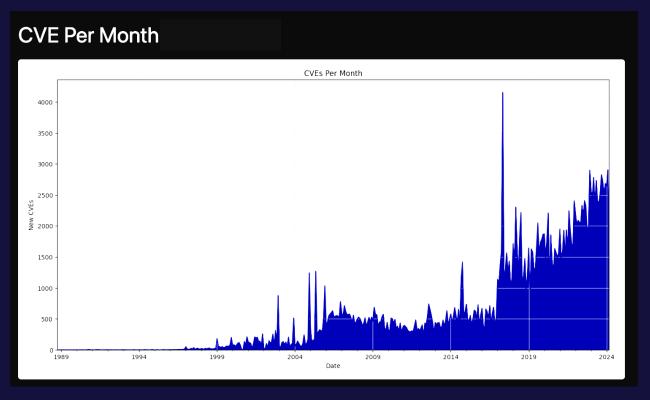
Reducing bias and subjectivity in questionnaires for underwriting accuracy

Understand and Quantify Vulnerability Impact

92% ICS94% ENT

Precision

Mapping Vulnerabilities to MITRE ATT&CK Tactics and Techniques


With AI, Cyber Risk Mitigation does not have to be a Guessing Game

Translating Vulnerabilities (CVEs) into Dollars at Risk True Risk-Based Vulnerability Management

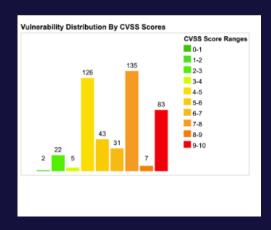
Thousands of Vulnerabilities in the wild and in OT networks Growing exponentially

Scoring Mechanisms translated into Heatmaps not telling the entire story What to remediate first to reduce dollars at risk?

CVSS (severity)

EPSS (likelihood/probability of exploitation in the wild)

KEV (known exploited)


CVSS Score Number Of Vulnerabilities Percentage						
0-1		0.00				
1-2	2	0.40				
2-3	22	4.80				
3-4	5	1.10				
4-5	126	27.80				
5-6	43	9.50				
6-7	31	6.80				
7-8	135	29.70				
8-9	7	1.50				
9-10	83	18.30				
Total	454					



Todays Vulnerability Environment

Limited to No Context Roles of Devices & Cybersecurity Controls Business

- How much does red 9 cost over orange 7?
- If I fix 2 oranges does that equal one red?
- How are we sure 3-4 green is not that bad?

Take Control with Value at Risk Simulation

Using DeRISK[™]

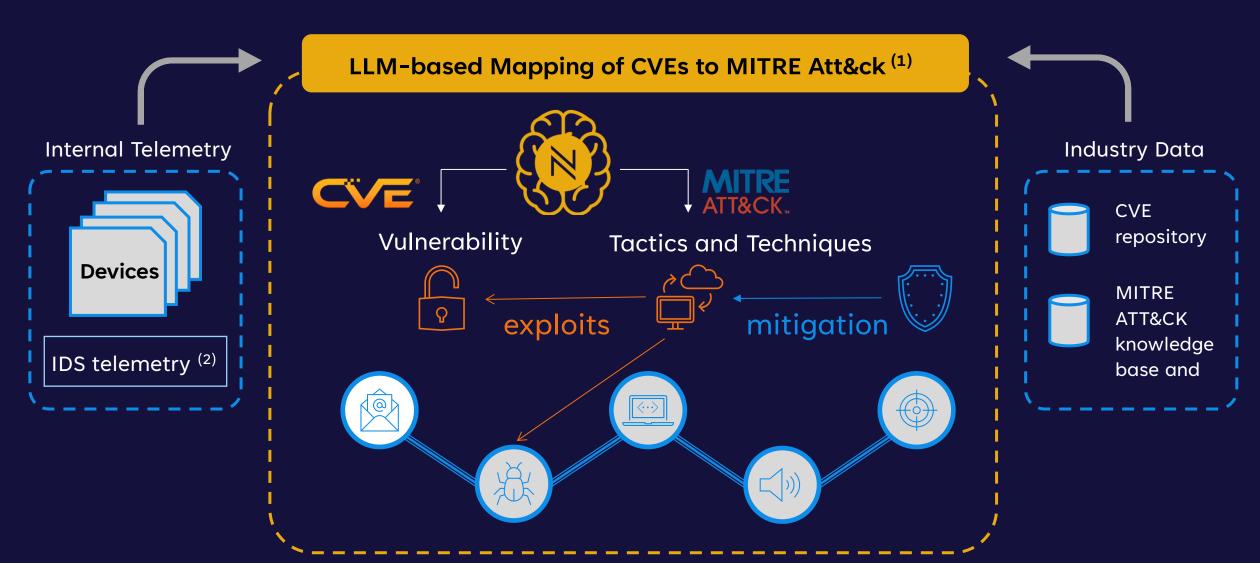
- Portfolio, Facility or Zone Level analysis
- Context for the business
 - TOP 10 vulnerabilities -> \$5M Value at Risk
 - Address these 10 Vulnerabilities to reduce exposure by 40%
 - Let your insurer know that you have addressed \$20M in exposure this year prior to renewal

IDs and External Data							Annual Loss		VaR 95th		
Vulnerability ID	Vendor	Role	Network	Device Count	cvss	EPSS	Mean Age (days)	s	% Contribution	s	% Contribution
CVE-2008-2976	30805, Cisco	windows_pdc	Corporate	78	5.6	0.742	666	\$977,646	91%	\$44,358	579
CVE-1999-0362	VMware, Inc.	other	DMZ	29	9.8	0.922	913	\$977,637	100%	\$250,280	96%
CVE-2013-1793	Schneider (ION8650)	rtu	DMZ	1	2.0	0.955	321	\$963,249	94%	\$273,911	879
CVE-2009-4921	VMware, Inc.	other	DMZ	4	3.4	0.005	527	\$844,153	64%	\$92,582	189
CVE-2013-1793	Osisoft (PI)	historian	DMZ	44	4.7	0.752	505	\$707,426	12%	\$128,825	969
CVE-2009-1678	Private	other	IoT	24	9.1	0.015	552	\$689,998	41%	\$360,593	409
CVE-2012-6612	LiteON	Engineering Station	Corporate	65	5.6	0.047	578	\$605,731	75%	\$335,886	519
CVE-2008-4843	Rockwell	plc	Corporate	97	3.3	0.568	319	\$527,281	31%	\$465,284	69
CVE-2014-3156	30805, Cisco	unknown	loT	28	7.8	0.407	817	\$446,117	21%	\$188,477	66%
CVE-2014-9560	, Cisco	ghost	Corporate	32	0.4	0.543	164	\$395,564	65%	\$115,231	339

Practical, Data-Driven and Business-Oriented Solution to Prioritize CVEs

What could an attacker achieve by exploiting a vulnerability?

Common Vulnerabilities and Exposures (CVEs)


MITRE ATT&CK Tactics,
Techniques, and
Procedures (TTPs)

Total 271,773 published CVEs from 1988 to 2024-11-29 75% of CVEs are between 2015 and 2024

Gen-Al to automate Mapping to MITRE Att&ck

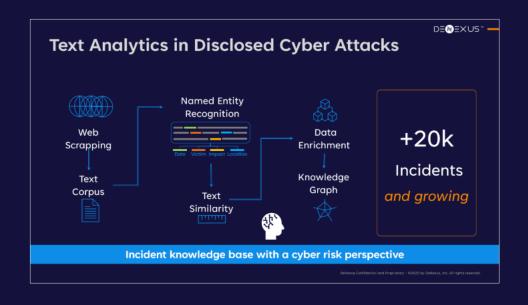
⁽¹⁾ Patents Pending. Mapping to MITRE Att&ck for Enterprise and for ICS

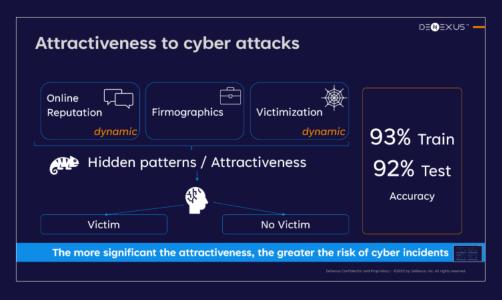
⁽²⁾ DeNexus' Technology Partners

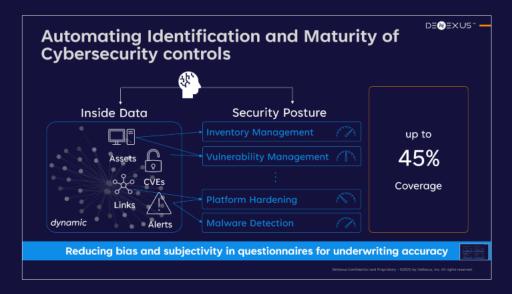
Expected Loss After Remediation

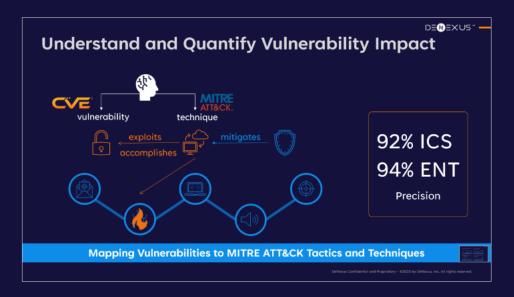
Vulnerabilities Mapped to Value at Risk

Vulnerabilities & Devices


Annual Expected Loss (EL, Mean) \$914,282 Rare Scenario 1 in 20 years (VaR 95th Percentile) \$4,955,816 Extreme Scenario 1 in 100 years (VaR 99th Percentile) \$19,879,869


Loss Reduction


The estimated decrease in overall risk when a specific vulnerability is completely eliminated **across all devices** in the system.


Vulnerability ID 🕆	Device Vendor 🕆	Device Role *	Device Networks *	Device Count *	cvss -	EPSS *	EL \$ =	EL % *	VaR 95 \$ *	VaR 95 % 🕶	VaR 99 \$ *	VaR 99 % 🕶
CVE-2012-6441	Rockwell	PLC	THE REAL PROPERTY.	1	4.0	0.86	(136,329)	-14.9%	(1,110,176)	-22.4	(1,910,963)	-9.6
CVE-2012-0221	Unknown	Master, Slave	come much, com Th	2	4.0	0.77	(123,847)	-13.5%	(1,004,790)	-20.3	(1,759,633)	-8.9
CVE-2014-3566	Hirschmann (RS20), Hirschmann (Railswitch)	Network Switch	CHARLESON,	149	3.4	0.97	(115,718)	-12.7%	(963,124)	-19.4	(1,552,198)	-7.8
CVE-2019-12258	Hirschmann (Railswitch)	Network Switch	CHARLES, CHA	19	7.5	0.09	(4,691)	-0.5%	(30,127)	-0.6	(108,274)	-0.5
CVE-2019-12257	Hirschmann (Railswitch)	Network Switch	control design, control sensign control design, control design, control sensign control design, control design, control sensign, control designs	19	9.8	0.92	(3,908)	-0.4%	(29,759)	-0.6	(14,431)	-0.1
CVE-2012-6438	Rockwell	PLC	1100 00	1	6.2	0.93	(524)	-0.1%	(31,422)	-0.6	0	0.0

Computing Systems 3rd Generation

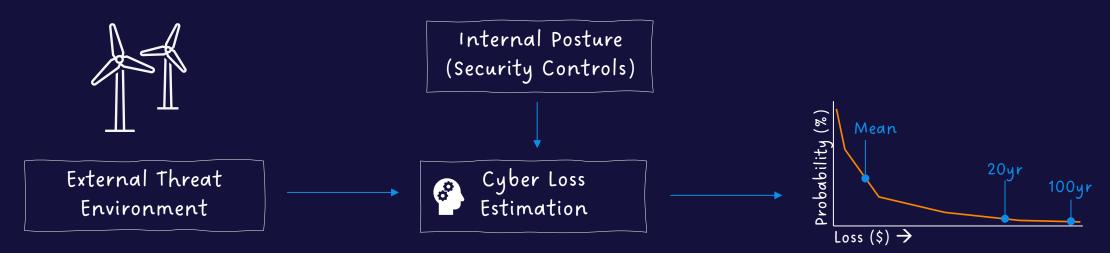
Privacy preserving

- Stateless computation of sensitive data
- Enforced de-identification and full encryption
- Verifiable transparency

AI and high-performance

- Cutting edge GPU and advance networking, to enable complex simulations
- Realtime analytics and large-scale AI model training

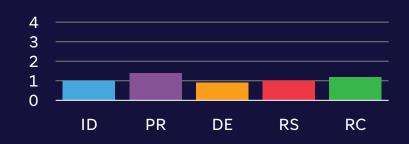
50 Million simulations run weekly on every clients' unit risk Joined NVIDIA Inception program to keep optimizing models, and computing needs



Financial quantification of cyber risk

Estimating financial loss of a cyber-attack affecting ICS/OT

Case Study 1: Wind Renewables



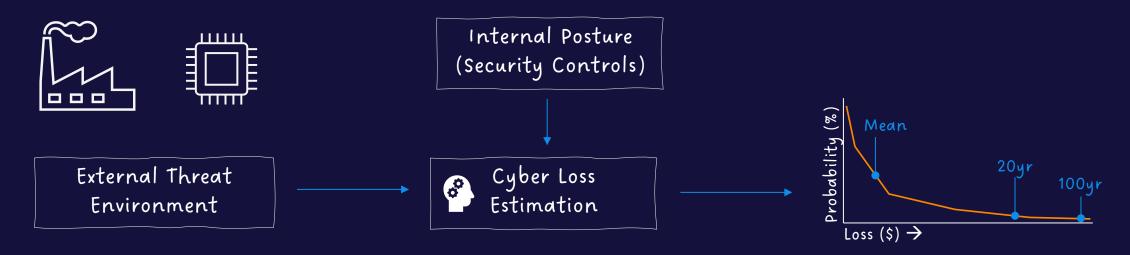
Background

- Low annual revenues
- Low frequency of loss events in this subindustry
- Low awareness of company (low attractiveness)
- Low activity in dark web

Security Controls

- Maturity: Basic
- Significant vulnerabilities
 - CVSS and EPSS

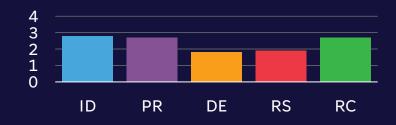
Estimated Loss


- Mean: 5.7% of Revenue
- 20yr: 21% of Revenue
- 100yr: 140%

Best Mitigations

- 1) DRP/BCP
- 2) Technical improvements & hardening

Case Study 2: Electronics Manufacturing

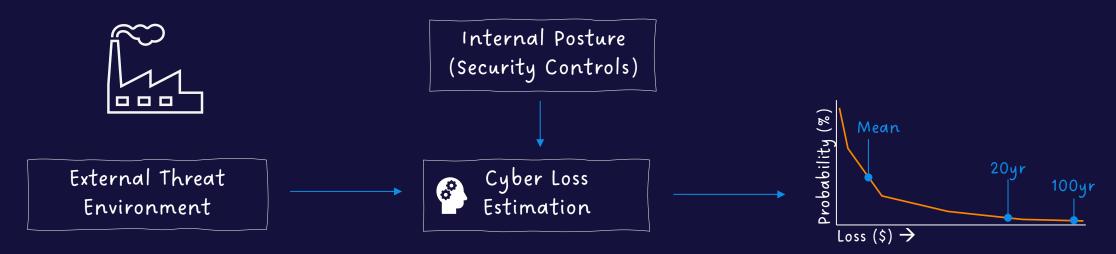


Background

- Very high frequency of loss events in this vertical
- High awareness of company (high attractiveness)
- Moderate activity in dark web

Security Controls

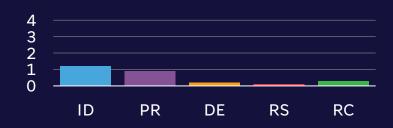
- High maturity in IT
- Medium maturity in OT: Risk-based



Estimated Loss

- Mean: 0.45% of Revenue
- 20yr: 0.46% of Revenue
- 100yr: 13% of Revenue

Case Study 3: Critical Manufacturing



Background

- Very high frequency of loss events in this vertical
- Low awareness of company (low attractiveness)
- Low activity in dark web

Security Controls

- High maturity in IT
- Low maturity in OT
 - Virtually no detection & response

Estimated Loss

- Mean: 3% of Revenue
- 20yr: 19% of Revenue
- 100yr: 31% of Revenue

Best ROI Projects

- 1) DRP/BCP
- 2) Monitoring

Output Samples: Expected Losses

by Facility

Facility Name	Industry	Sub-Industry
Mature Solar Gen	Electricity	Solar
Compliant Wind Gen	Electricity	Wind
Risky Wind Gen	Electricity	Wind
Risky Gas Peaker	Electricity	CombinedCycle
Average Wind Gen	Electricity	Wind

Forensic

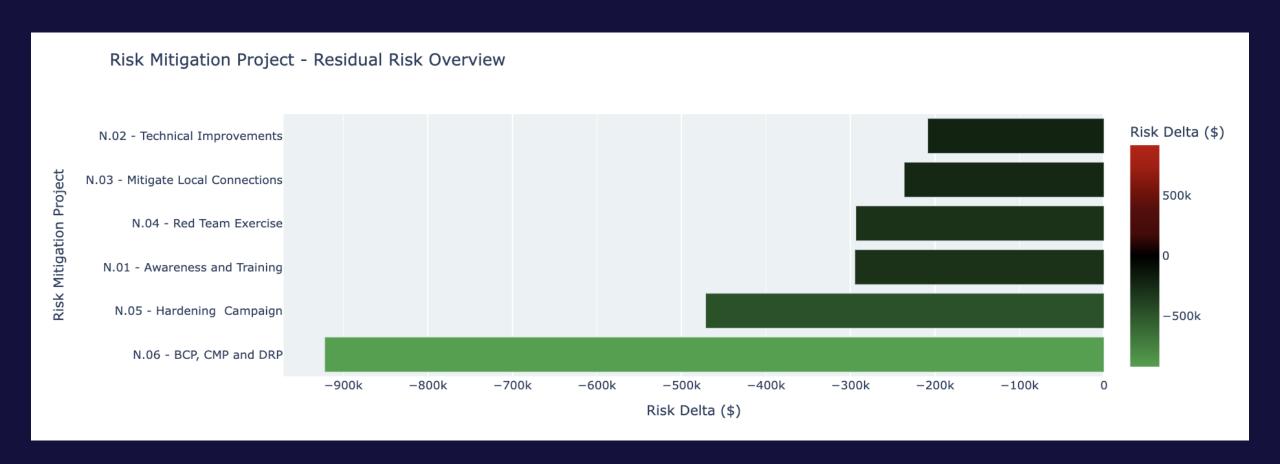
Investigation

				Loss	Revenue
	Production Capacity	Annual Revenue (\$)	Expected Loss (\$)	Contribution (%)	(%)
US	300	\$56,325,680	\$36,845	0.6%	20.7%

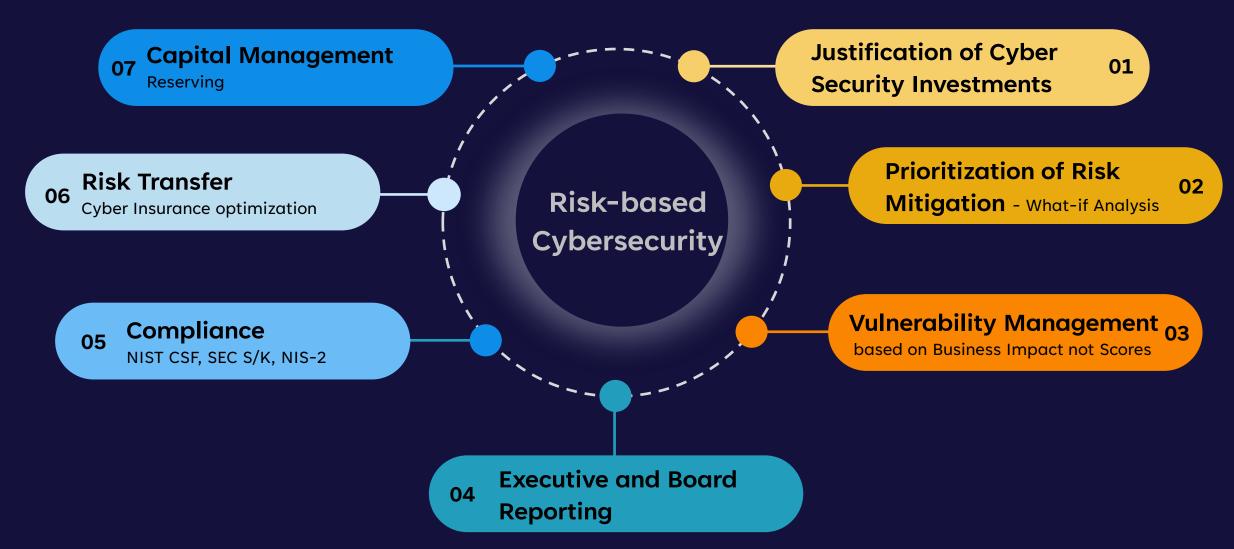
\$164,765

by Type of Loss

Loss Event	Annual Expected Loss (\$)	Loss (in Days of Revenue)	Event Contribution (%)	Event Revenue Loss Contribution (%)	6
Loss Of Productivity	\$3,815,210	5.1	63.9%	1.4%	
Downtime	\$1,406,060	1.9	23.6%	0.5%	
Extortion	\$296,295	Initial Access Vector	or Annual Expected Loss (\$)	Loss (in Days of Revenue)	Co
Equipment Damage	\$189,211	Exploitation Of Remot		2.5	


by Attack Vector

Initial Access Vector (IAV)	Annual Expected Loss (\$)	Loss (in Days of Revenue)	Event Contribution (%)	Event Revenue Loss Contribution (%)
Exploitation Of Remote Services	\$1,834,123	2.5	30.7%	0.7%
Remote Services	\$1,716,350	2.3	28.8%	0.6%
External Remote Services	\$724,885	1.0	12.1%	0.3%
Phishing	\$477,483	0.6	8.0%	0.2%
Drive-By Compromise	\$463,390	0.6	7.8%	0.2%


Case Study: Risk Mitigation Projects

Analysis of Alternatives – Comparing Reduction of Risk

Cyber Risk Management

What is the PROBABILITY that a loss (\$\$\$) of a certain size or greater will occur in a year?

Annual loss curve and exposure distribution

"There is a % (probability) of observing an annual loss higher than \$ (dollar amount)."

Source: DeRISK Demo (denexus.io)

Al Use Case 3rd Generation

Large Language Model Querying

"Give me the vulnerabilities with \$1M loss potential at customer A's US facilities"

"Give the best 5 controls with \$1M CAPEX budget, \$100k yearly expenses, and <6 months deployment. Show risk reduction, return on investments, and peers' comparison. Show the residual Value at Risk, and capital needs considering my insurance program"

E2E encrypted access to Cyber Insights made easy

Cyber Risk Management

Risk-based Cybersecurity & data-driven Risk Management based on business impact

Cyber Risk Data & Analytics required

Acceptance

Reserving

You know which risk and how much liability you carry on your balance sheet

Transfer

Cyber Insurance

You know what coverage and how much limit you need. And premium to pay

Controls to buy down risks

You can confidently prioritize risk mitigation controls & projects and justify your budget

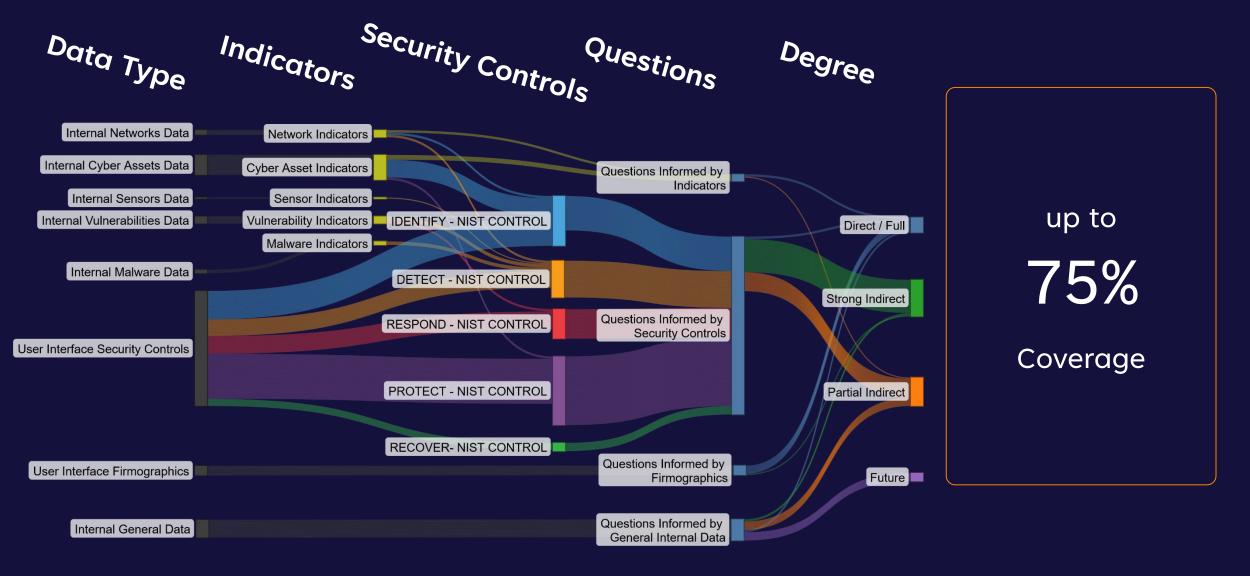
Avoidance

Understanding drivers

You can identify where you could do things differently to avoid risk

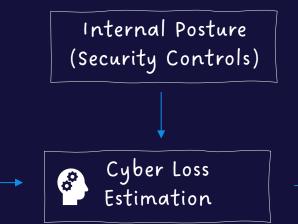
DENEXUS

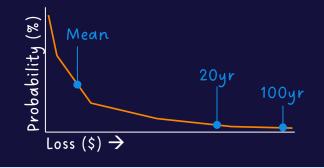
denexus.io


THANKYOU

DeNexus, Inc. Confidential and Proprietary

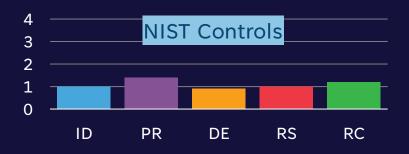
Cyber Telemetry Mapped to Cyber Insurance





Case Study: Energy - Wind Renewables

External Threat Environment



Background

- Low frequency of incidents in this subindustry
- Low attractiveness

Security Controls

- Maturity: Basic
- Significant vulnerabilities

Estimated Loss

- Mean: 5.7% of Revenue
- 20yr: 21% of Revenue
- 100yr: 140%

Best Mitigation Projects

- 1) Backup & recovery plan
- 2) Hardening / better controls